
N90-16454 J

A GENERIC FINE-GRAINED PARALLEL C

L. Hamet J. Dorband

NASAJGoddard Space Flight Center/635

Greenbelt, MD 20771

ABSTRACT

With the present availabifity of parallel processors of vastly

different architectures, there is a need for a common language

interface tomultiple types of machines. On, parallel Ccompiler,

currently under development, is intended to be such a language.

This language is based on the belief that an algorithm designed

around fine-grained parallelism can be mapped relatively easily

to different parallel architectures, since a large percentage of the

parallelism has been identified. The compiler generates a FORTH-

like machine-independent intermediate code. A machine-de-

pendent translator will reside on each machine to generate the

appropriate executable code, taking advantage of the particular

architectures. The goal for this project is to allow a user to run

the same program on such machines as the Massively Parallel

Processor, the CRAY, the Connection Machine, and the CYBER

205, as well as serial machines such as VAXes, Macintoshes and

Sun workstations.

Keywords: Fine-Grained Parallelism, Portability, Operator

Overloading, Massively Parallel, SIMD, MPP, C, Data Parallel.

_TRODUCTION

As the variety and availability of parallel machines increases, the

need for a portable parallel compiler becomes critical. To be

effective, however, this compiler must be able to take full

advantage of each machine' s unique architecture. Two concepts

are necessary to achieve these goals: modularity or layering and

fine-grained parallelism.

A modular compiler design allows machine-dependent charac-

teristics to be separated from the machine-independent (generic)

characteristics. The object code generator (orP-code translator)

is the lone machine-dependent piece of the compiler, conse-

quently, parsing may be done once, with the output submitted to

various versions of the machine-dependent layer, one version for

each unique machine.

Fine-grained parallelism assigns the task of extracting parallel-

ism within code to the programmer. The user-defined parallel-

ism may be mapped to any architecture, since it may be easily

assembled into a serial implementation or a parallel implemen-

tation of any desired degree. A parallel description of a program

is much easier and straightforward to assemble into a serial

description than a serial description into a parallel one.

It may seem as though it is an unreasonable task to expect a

skilled programmer, let alone an unskilled one, to extract paral-

lelism from an algorithm when it is recognized that this is such

a difficult task for a compiler. The members of the MPP Working

Group have shown that both skilled and unskilled programmers

alike may easily extract fine-grained parallelism. In reality,

extracting fine-grained parallelism is no more difficult than

recognizing what code must be repeated within a loop in serial
code.

PROGRAMMING MODEL

The C language implementation supported here is based on a

model of computation where there is one serial processor (the

control unit) and many independent SIMD parallel processors

(ALUs controlled by the control unit). Serial data is stored in the

control unit memory (S) and parallel data elements are stored in

the memory (P) of the parallel SIMD processors. The same

operation is performed simultaneously on parallel data elements.

The only exception to this occurs if a processor is masked out of

the operation. Parallel control structures using this mask capa-

bility provide a means of restricting operations performed within

a parallel processor to only those operations that apply to the data

in that processor.

Figure 1. Logical View of SIMD Processing Model

Programming such amodel (Figure 1) can be viewed as program-

ming a single controller that has two memories, P and S. If data

U.S. Government Work. Not protected by
U.S. copyright.

625



fromSisusedwithdatafromS,theresultremainsinS.Ifdata
fromPisusedwithdatainP,theresultremainsinP.However,
ifdatafromSisusedwithdatainP,theresultmustremaininP.
Totallyindependentoperationsneednotbeconcernedwiththe
factthattherearemanyPmemories.Thismodelisanoversim-
plification,sinceitdoesnotaccountforinter-processorinterac-
tions.

Most operations performed by a SIMD processor do not involve

data from different processors, but the need for inter-processor

interaction does arise. Inter-processor communication and data

reduction operations facilitate the ability for parallel data ele-

ments to interact. Data reduction operations produce a single

result from data in many parallel processor memories (P) and
store the result in S.

Consider more closely Figure i, containing two views of SIMD

processing: a simplified model and a complete model. The

simplified model consists of a control unit and two memories, S

and P. The data in S is considered serial data and data in P is

considered parallel data. The complete model differs in that it has

multiple P memories. If the complete model is run with all but

one processor masked out, it will give the same result as the

simplified model (with the exception of inter-processor commu-

nications). The results from the simplified model should be the

same as a serial processor, where S and P make up the memory

of the serial processor.

In the simplified model, the control structure should act the same

whether the condition is based on results in P or results in S. The

complete model has multiple P memories; the data in each should

be manipulated only by those instructions that are pertinent to it.

This means that some processors must be turned off based on

conditions computed in them. These conditions result in a

determination that the corresponding conditionally executable

code is not pertinent. Actually, only code that effects the user

detectable state is masked. This includes assignment statements

and conditional expressions (?:).

The preceding has several subtle implications. 1) Code within

control structures, where the conditional result is in P, must be

executed as long as the condition is true for at least one processor.

2) More subtly, however, if the condition is not true for any

processor, then the code must not be executed. The subtlety is

that although no processors' memory (P) will be modified by the

code within the parallel control structure, data in S might be

modified by executing this code. However, this violates the

above constraints of the simplified model, and consequently

must be prevented from occurring.

LANGUAGE DESCRIPTION

The popularity and flexibility of C made it the natural choice as

the language to be implemented in such a manner. Parallelism is

achieved through operator and control structure overloading (to

be further explained). This preserves the Kernighan and Ritchie _

look of C, yet allows a wide range of levels of parallelism to be

implemented, depending on the targeted machine. The paralleli-

zation of C is based on experience learned in the development of

MPP Parallel Forth 2. The only syntactical addition to the

language is the storage class PARALLEL.

The language has been altered slightly to accommodate the

parallelism. Due to the different architectures of the machines

using this compiler, the storage class REGISTER has been

eliminated. On the other hand, for the sake of bit serial proces-

sors, the ability to specify number of bits in a declaration has been

expanded to all variables, not only to fields within a structure or

union. Depending on the machine architecture, however, the

programmer may get more precision than requested, but never
less. All cases of precision increases will be consistent and

documented for each version of the compiler.

COMPILER DESIGN

The C compiler is divided into four components: the scanner/

parser, intermediate code generator, intermediate code transla-

tor, and virtual machine. The scanner/parser and intermediate

code generator are machine-independent; the translator and

virtual machine must be rewritten for each machine type.

The scanner/parser is an SLR(1) parser, written without the use

of the UNIX TM utilities yacc TM and lex TM, due to Macintosh

memory partitioning limitations. (The Macintosh II is the first

machine for which a version of the compiler is being written.)

The intermediate code generator generates postfix P-code. This

style was chosen because of its speed and minimal size. Further-

more, because it is English-based, it is not difficult to read. Since

the intermediate code generator is really only a postfix convener,

this module remains machine-independent.

The translator converts the P-code to a FORTH-like"assembly".
FORTH, a stack-oriented language, was chosen because of its

speed and register simplification. Furthermore, based on prior

experience with the Massively Parallel Processor, FORTH has

been demonstrated to be a logical and efficient language to run

as a virtual machine for SIMD architectures; each processing
element memory is treated as a stack.

The virtual machine is a simple FORTH engine, actually coded

in C, which executes the "object module" output from the
translator.

Although we have implemented both the translator and virtual

machine as machine-dependent modules, the translator could be

generalized so that it would be machine-independent, requiring

only re cgmpilation with a modified include file. However, we

opted against this, avoiding as much unnecessary overhead
(speed loss) as possible.

OVERLOADED OPERATORS

There are no operators added to the parallel C; all existing

operators are overloaded. The version of each operator routine

called by the translator is determined by the types of the oper-

626



ands.Unaryoperatorsaretrivial;thereisa version for each

parallel and serial type. For binary operations, if both operands

are serial or both parallel, the result corresponds. Standard C

conversion rules still apply to both serial and parallel (always to

the greater precision, signed to unsigned, and integer to floating

point.) Added to these rules, however, is serial to parallel

conversion when these two types of operands are operated on

together. A serial to parallel conversion is equivalent to a

broadcast of the serial value.

The bit shift operators (<< and >>) take on interesting results

when done in parallel. For these operators, where the left

operand is the value and the right operand is the number of bits

by which to shift, the unusual case occurs when the number of

bits by which to shift is parallel. If the operand is a variable,

different processors may contain different values. The operation

is implemented with a parallel mask, where, after each bit shift,

the processors which have completed the required number of

shifts are masked out, until all have completed.

Parallel logical operators (&& and II) are implemented with

parallel versions of the if-else structure (See Overloaded Control

Structures). Parallel addressing operators (* and &) are unde-

fined, as parallel pointers are not implemented in the current

implementation of the compiler.

Parallel Pointers

Although parallel pointers are not implemented in this version of

the compiler, serial pointers to parallel variables are legal. They

must be declared in two parts. The parallel data object must be

declared as a type, then the pointer variable is declared as a

pointer to that type, in a separate declaration. To illustrate,

typedef parallel int A;

A *ptr;

is legal, whereas the declaration

parallel int *ptr;

would be recognized as a parallel pointer declaration, and flagged

as an error.

Parallel Assignment Operators

Assignment operators (=, +=, k=, &=, etc.) do not observe the
standard conversion rules, because the resultant type must be the

type of the left operand -- the one receiving the final value.

Serial--serial and parallel--parallel left-right operand p .airs are

trivial; no serial--parallel conversion is necessary. Parallel--

serial requires a standard serial to parallel conversion. Serial--

parallel, however, yields interesting results.

Up to this point, no operations involve the data in different

parallel processors. When parallel data is assigned to a serial

variable, a data reduction operation must be performed. This

involves data in all the parallel processors. A simple assignment

(=) of a parallel to a serial is implemented as a bitwise cumulative

OR over all values of the parallel operand, with the serial operand

being set to the resulting value.

Each complex assignment operator is treated uniquely. The

addition-assignment (+=) is implemented with a cumulative sum

added to the serial operand; the subtraction-assignment (-=)

subtracts the cumulative sum from the serial operand. Multipli-

cation-assignment (*=) and division-assignment (/=) are treated

comparably, with a cumulative product.

Bitwise AND-,OR-,and XOR-assignments (&=, I=, and ^=) are

implemented as expected: a cumulative AND/OR/XOR is done

over all values of the parallel operand, with the serial operand

being set to the resulting value.

Modulus-assignment (%=) and shift-assignment (>>=, <<=) are

undefined for the serial--parallel case.

OVERLOADED CONTROL STRUCTURES

All control structures in the compiler apply to both serial and

parallel conditions. Each structure is executed in parallel if the

test expression evaluates to parallel.

For SIMD machines, all structures must use a parallel mask, to

mask out processors which have failed the test condition. A bit

in the mask is set or cleared based on the value of the test

expression in the corresponding processor.

Parallel control structures consist of the same structures as serial

control structures: if-else,while, for, and switch. For code to be

executed in a parallel control structure, at least one parallel

processor must require it.

In a parallel 'for' loop, either the initialization or incrementation

expressions (or both) may be serial, as long as the test expression

is parallel.

An example of a parallel 'while' loop is the C code:

parallel int a,b;

long c = O;

while (a >5) {

b *= a;

am;

c++;
}

resulting in the statements inside the loop being executed for

each processor where that element of the array a is greater than

five. Since c is a serial variable, it will be incremented each time

the loop is executed, thus counting the maximum times the loop

is executed for any processor.

INTER-PROCESSOR COMMUNICATION

627



Inter-processor communication allows data from different proc-
essors to interact. This is performed by adding an integer value
(n) to a pointer to a parallel value (i.e. *(para+n) ). The data
(*para) in processor m+n modulo the number of processors will

be moved to processor m. However,this does not in any way
imply the time it takes to perform the move. It is totally
architecture dependent.

COMPILER CONSTRUCTION

Whereas the scanner/parser is standard SLR(1) and the code
generator is a straightforward postfix convener, the interesting
dcsign issues pertain to the translator. The most notable points

are the symbol table setup and serial and parallel memory
allocation.

The symbol table is "a linked list of linked lists". All variables
are chained in a list in the order encountered in the code. Each

variable is, in turn, the beginning of a definition chain. Since C
allows loosely formatted type definitions, the only consistent
method to create a definition, for type checking purposes, is to
chain the "pieces" of the type definition. A piece can be a base

type (e.g., int, char, float) or a modifier (e.g., pointer, array
dimension, parallel). Type checking is done by walking the
chain.

Memory allocation is handled with four constants, defined by the
virtual machine. These are LP, GP, PLP, and PGP- local

pointer, global pointer, parallel local pointer, and parallel global
pointer, containing the starting address of serial local variables,

serial global variables, parallel local variables, and parallel
global variables, respectively. The translator keeps track of the
last space allocated in terms of offsets for each of those constants.
Variables are thereafter referred to by address in the object code

generated by the translator. Because the translator is FORTH-
like, the virtual machine is composed of FORTH "words",
functions executed when named. The virtual machine defines

LP+, GP+, PLP+, and PGP+, to add these constants. Conse-
quently, addresses appear as an offset, followed by one of those

words. (Remember that FORTH uses postfix format.) The lone
requirement of the virtual machine is that a block of memory be
explicitly allocated before manipulated. Therefore, allocation
statements may appear throughout the generated object code.
Two more FORTH words are defined by the virtual machine --

ALLOC and PALLOC, for serial and parallel memory alloca-
tion.

Parallel variables are actually allocated both parallel and serial
memory. A serial longword (four bytes) is allocated to contain
two word-length values: parallel starting address and size. Hence,

parallel variables are referenced just as serial variables. The
information in the serial longword is used at execution time to

locate the parallel variable.

POSSIBLE USES

This compiler will have versions on both serial and parallel
machines. (On serial machines, parallel structures and opera-

tions are implemented serially.) Furthermore, a program need

only be retranslated, as opposed to completely recompiled, to be
run on a new machine. Consequently, a natural use of this type
of compiler is to use a serial machine as a simulator for a parallel
machine. This would offload much of the traffic on more costly

parallelmachinesduringparallelcodedebugging.

Another possible use for this type of compiler is in conjunction

with the newest computational strategy: network computing.
Each node of the network would have its own version of the

machine-dependent portion of the compiler. An entire program
would be run through the machine-independent section of the

compiler, then each piece of the program would be translated by
the machine-dependent portion corresponding to the machine on
which that section is to be run.

IMPLEMENTATIONS AND FUTURE PLANS

The fast complete version of this compiler is currently being

implemented in Macintosh Programmer's Workshop (MPW) C
on an Apple Macintosh II workstation, to execute serially. Since
the code itself is written in C, using only the simplest library
routines (to ensure portability), it will be trivial to port the same
code to other serial workstations. The next target is the Sun.

For parallel machines, a new version of the translator and virtual
machine must be written. The first type of parallel architecture

for which a version will be written is an array processor, such as
the Massively Parallel Processor or other commercially avail-
able SIMD processor. After this implementation there are plans
for a vector processor version, such as for a CRAY.

SUMMARY

By isolating the machine-dependent and machine-independent
pieces of a compiler, we have created a compiler which reflects

a high degree of portability: the same code may be run on very
different machines (architecturally) with only partial recompila-

tion. Because the programmer extracts the parallelism, the
degree to which this parallelism is utilized becomes a completely
machine-dependent issue. Consequently, each architecture is
utilized to its fullest, without any code modification.

REFERENCES

1. Kernlghan, B. W., and Ritchie, M. D., The C Program-
ming Language, Prentice-Hall, Inc., Englewood Cliffs,
NJ.

. Dorband, J. E., MPP Parallel Forth, Frontiers of Mas-

sively Parallel Scientific Computation, NASA CP-2478,

September 1986, pp. 275-283.

628


